Image deblurring with matrix regression and gradient evolution
نویسندگان
چکیده
This paper presents a supervised learning algorithm for image deblurring. The task is addressed into the conceptual framework of matrix regression and gradient evolution. Specifically, given pairs of blurred image patches and their corresponding clear ones, an optimization framework of matrix regression is proposed to learn a matrix mapping. For an image to be deblurred, the learned matrix mapping will be employed to map each of its image patches directly to be a new one with more sharp details. The mapped result is then analyzed in terms of edge profiles, and the image is finally deblurred in way of gradient evolution. The algorithm is fast, and easy to be implemented. Comparative experiments on diverse natural images and the applications to interactive deblurring of real-world out-of-focus images illustrate the validity of our method. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
A curve evolution-based variational approach to simultaneous image restoration and segmentation
In this paper, we introduce a novel approach for simultaneous restoration and segmentation of blurred, noisy images by approaching a variant of the Mumford-Shah functional from a curve evolution perspective. In particular, by viewing the active contour as the set of discontinuities in the image, we derive a gradient flow to minimize an extended Mumford-Shah functional where the known blurring f...
متن کاملTwo-Phase Kernel Estimation for Robust Motion Deblurring
We discuss a few new motion deblurring problems that are significant to kernel estimation and non-blind deconvolution. We found that strong edges do not always profit kernel estimation, but instead under certain circumstance degrade it. This finding leads to a new metric to measure the usefulness of image edges in motion deblurring and a gradient selection process to mitigate their possible adv...
متن کاملSuperoptimal Preconditioned Conjugate Gradient Iteration for Image Deblurring
We study the superoptimal Frobenius operators in the two-level circulant algebra. We consider two specific viewpoints: (1) the regularizing properties in imaging and (2) the computational effort in connection with the preconditioned conjugate gradient method. Some numerical experiments illustrating the effectiveness of the proposed technique are given and discussed.
متن کاملA Scaled Gradient Projection Method for Constrained Image Deblurring
A class of scaled gradient projection methods for optimization problems with simple constraints is considered. These iterative algorithms can be useful in variational approaches to image deblurring that lead to minimize convex nonlinear functions subject to nonnegativity constraints and, in some cases, to an additional flux conservation constraint. A special gradient projection method is introd...
متن کاملIterative regularization algorithms for constrained image deblurring on graphics processors
The ability of the modern graphics processors to operate on large matrices in parallel can be exploited for solving constrained image deblurring problems in a short time. In particular, in this paper we propose the parallel implementation of two iterative regularization methods: the well known expectation maximization algorithm and a recent scaled gradient projection method. The main difference...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 45 شماره
صفحات -
تاریخ انتشار 2012